3. Operators on a Hilbert Space.

A Hilbert space \mathcal{H} is a vector space over the real or complex scalars endowed with an inner product \langle,$\rangle than maps \mathcal{H} \times \mathcal{H}$ into \mathbf{R} or \mathbf{C} that satisfies the following properties.

1. $\langle x, y\rangle=\overline{\langle y, x\rangle}$ and $\langle x, y\rangle$ is linear in x, i.e. $\left\langle a_{1} x_{1}+a_{2} x_{2}, y\right\rangle=a_{1}\left\langle x_{1}, y\right\rangle+a_{2}\left\langle x_{2}, y\right\rangle$ and semilinear in y, that is $\left\langle x, a_{1} y_{1}+a_{1} y_{2}\right\rangle=\overline{a_{1}}\left\langle x, y_{1}\right\rangle+\overline{a_{2}}\left\langle x, y_{2}\right\rangle$
2. $\langle x, x\rangle \geq 0$ and is equal to 0 if and only if $x=0$. It follows that $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$ is a norm and
3. \mathcal{H} is complete under this norm, as a mertic space with $d(x, y)=\|x-y\|$.

We first note that $\langle a x+b y, a x+b y\rangle=\|a\|^{2}\langle x, x\rangle+\|b\|^{2}\langle y, y\rangle+2 R P a \bar{b}\langle x, y\rangle \geq 0$ for all values of a and b. This forces

$$
|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle
$$

and

$$
\|x+y\| \leq\|x\|+\|y\|
$$

for all $x, y \in \mathcal{H}$ This makes $d(x, y)=\|x-y\|$ in to a metric and \mathcal{H} is assumed to be complete under this metric.
Example 1. $\mathcal{H}=L_{2}[0,1] .\langle f, g\rangle=\int_{0}^{1} f(s) \overline{g(s)} d s$
Example 2. $\mathcal{H}=l_{2}\left[Z^{+}\right] .\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}$
We say that x and y are orthogonal or $x \perp y$ if $\langle x, y\rangle=0$. A collection $\left\{x_{\alpha}\right\}$ is mutually orthogonal if $\left\langle x_{\alpha}, x_{\beta}\right\rangle=0$ for $\alpha \neq \beta$. It is an orthonormal family if in addition $\left\|x_{\alpha}\right\|=1$ for every α. Any two vectors in an orthonormal family are at a distance $\sqrt{2}$. In a separable Hilbert space any orthonormal set is either finite or countable. A maximal collection of orthonormal $\left\{e_{\alpha}\right\}$ vectors in \mathcal{H} is a basis and

$$
x=\sum_{\alpha}\left\langle x, e_{\alpha}\right\rangle e_{\alpha}
$$

is a convergent expansion with

$$
\|x\|^{2}=\langle x, x\rangle=\sum_{\alpha}\left|\left\langle x, e_{\alpha}\right\rangle\right|^{2}
$$

For any subspace $\mathcal{K} \subset \mathcal{H}$ there is the orthogonal complement $\mathcal{K}^{\perp}=\{y: y \perp \mathcal{K}\} .\left(\mathcal{K}^{\perp}\right)^{\perp}=$ \mathcal{K}. $\mathcal{H}=\mathcal{K} \oplus \mathcal{K}^{\perp}$. If $\Lambda(x)$ is a bounded linear functional on \mathcal{H} there is a unique $y \in \mathcal{H}$ such that $\Lambda(x)=\langle x, y\rangle$. To prove it let us look at the null space $\mathcal{K}=\{x: \Lambda(x)=0\}$. It has codimension 1 and has x_{0} that is orthogonal to \mathcal{K} and $\left\|x_{0}\right\|=1$ with $\Lambda\left(x_{0}\right)=c \neq 0$. Claim $\Lambda(x)=\left\langle x, \bar{c} x_{0}\right\rangle$. True on \mathcal{K} and true for $x=x_{0}$. They span \mathcal{H}.

Weak topology. $x_{n} \hookrightarrow x$ if $\left\langle y, x_{n}\right\rangle \rightarrow\langle y, x\rangle$ for all $y \in \mathcal{H}$. The unit ball $\{x:\|x\| \leq 1\}$ is compact in the weak topology. That is, given any bounded sequence x_{n} with $\left\|x_{n}\right\| \leq C$ there is a sub sequence $x_{n_{j}} \hookrightarrow x$. To see this we can assume \mathcal{H} is separable. It is enough to check it for a countable dense set of $y \in \mathcal{H}$. But for each $y,\left\langle y, x_{n}\right\rangle$ is bounded and we can extract a subsequence $x_{n_{j}}$ such that $\left\langle y, x_{n_{j}}\right\rangle$ has a limit. Diagonalization works. We get a subsequence that works for a countable dense set and hence for all y. The limit is a bounded linear functional of y and is $\left\langle y, x_{0}\right\rangle$ for some $x_{0} \in \mathcal{H}$
Orthogonal Projection. If $\mathcal{K} \subset \mathcal{H}$ then $\mathcal{H}=\mathcal{K} \oplus \mathcal{K}^{\perp}$ and x can be uniqulely decomposed as $x=x_{1}+x_{2}$ with $x_{1} \in \mathcal{K}$ and $x_{2} \in \mathcal{K}^{\perp}$. The maps $P_{i}: x \rightarrow x_{i}$ are self adjoint, satisfy $P_{i}^{2}=P_{i}, P_{1} P_{2}=P_{2} P_{1}=0$ and $P_{1}+P_{2}=I$. The infimum $\inf _{y \in \mathcal{K}}\|y-x\|$ is attained when $y=P_{1} x$.
Problem. 1. If $x_{n} \hookrightarrow x$ then $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$. If $x_{n} \hookrightarrow x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ then $\left\|x_{n}-x\right\| \rightarrow 0$.

Linear Operators on \mathcal{H}. A map T from one Hilbert space \mathcal{H} to another Hilbert space \mathcal{K} is a bounded linear operator if it is linear i.e. $T(a x+b y)=a T x+b T y$ and bounded i.e. $\|T x\| \leq C\|x\|$. A linear map is continuous if and only if it is bounded. $\|T\|=$ $\sup _{\|x\| \leq 1}\|T x\| .\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|$. A linear operator T is compact if the image under T of the unit ball $\|x\| \leq 1$ compact in \mathcal{K}. The adjoint T^{*} of a bounded linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is defined by $\left\langle T^{*} x, y\right\rangle=\langle x, T y\rangle$. One checks that $\left(a T_{1}+b T_{2}\right)^{*}=\bar{a}_{1} T_{1}^{*}+\bar{a}_{2} T_{2}^{*}$ and $\left(T_{1} T_{2}\right)^{*}=T_{2}^{*} T_{1}^{*}$. An operator T is self adjoint if $T^{*}=T$ i.e. $\langle T x, y\rangle=\langle x, T y\rangle$. In general the product $T_{1} T_{2}$ of two self adjoint operators is not self adjoint unless they commute, i.e $T_{1} T_{2}=T_{2} T_{1}$. If T is self adjoint so is any $p(T)$ for any polynomial p with real coefficients.

The resolvent set of an operator T in Hilbert Space over the complex numbers is $z \in \mathbf{C}$ such that $(z I-T)^{-1}$ exists as a bounded operator., i.e. $(z I-T)$ is one to one, onto and (therefore has a bounded inverse), its complement is the spectrum $\mathbf{S}(T)$.
If $z \in \mathbf{S}(T)$ then $|z| \leq\|T\|$. If $|z|>\|T\|$,

$$
(z I-T)^{-1}=z^{-1}\left(I-\frac{T}{z}\right)^{-1}=\sum_{n \geq 0} \frac{T^{n}}{z^{n+1}}
$$

exists as a bounded operator and so $z \notin \mathbf{S}(T)$. If $\mathbf{S}(T)$ is empty $(z I-T)^{-1}$ is entire and tends to 0 at ∞. Therefore $\left(I-\frac{T}{z}\right)^{-1} \equiv 0$. Cannot be!
If $z I-T$ may not be invertible because it has a null space i.e nontrivial solutions exist for $T x=z x$ where z is a complex scalar. Then $z \in \mathbf{S}(T)$ and z is an eigenvalue with x as the eigenvector.

If T is a self-adjoint operator $\mathbf{S}(T) \subset[-\|T\|,\|T\|] \subset \mathbf{R}$. It is enough to show $z=a+i b \notin$ $\mathbf{S}(T)$ if $b \neq 0$.
Problem. 2. Show that for any bounded operator T, if $\mathbf{N}(T)=\{x: T x=0\}$ is the null space and $\mathbf{R}(T)=\{y: y=T x\}$ for some x is the range then $\mathbf{N}\left(T^{*}\right)=\overline{\mathbf{R}(T)}$.

To prove $z=a+i b \notin \mathbf{S}(T)$ it is enough to show that $T x=z x$ has no nonzero solution and that $\mathbf{R}(T-z I)$ is closed. Then it can not be a proper subspace because then the orthogonal complement which is the null space of $T^{*}-z I=T-z I$ would be nontrivial. We next need to prove that the range is dense. An inequality of the form $\|(T-z I) x\| \geq c\|x\|$ is enough, because if $y_{n}=(T-z I) x_{n}$ has a limit y then x_{n} will be a Cauchy sequence with a limit x and $(z I-T) x=y$.

$$
\begin{aligned}
\langle(z I-T) x,(z I-T) x\rangle & =\|a\|^{2}\|x\|^{2}+\|b\|^{2}\|x\|^{2}+\|T x\|^{2}-\langle(a+i b) x, T x\rangle-\langle T x,(a+i b) x\rangle \\
& =\|a\|^{2}\|x\|^{2}+\|b\|^{2}\|x\|^{2}+\|T x\|^{2}-(a+i b)\langle T x, x\rangle-(a-i b)\langle T x, x\rangle \\
& =\|a\|^{2}\|x\|^{2}+\|b\|^{2}\|x\|^{2}+\|T x\|^{2}-2 a\langle T x, x\rangle \\
& =\|b\|^{2}\|x\|^{2}+\|T x-a x\|^{2} \\
& \geq\|b\|^{2}\|x\|^{2}
\end{aligned}
$$

An operator $T: \mathcal{H} \rightarrow \mathcal{K}$ is completely continuous or compact if any bounded sequence x_{n} has a subsequence $x_{n_{j}}$ such that $T x_{n_{j}}$ converges. In other words the image under T of the unit ball $\|x\| \leq 1$ in \mathcal{H} is compact in \mathcal{K} Often $\mathcal{K}=\mathcal{H}$.
An eigenvalue λ of an operator T from $\mathcal{H} \rightarrow \mathcal{H}$ is one for which $T x=\lambda x$ has a nontrivial solution and the corresponding x is the eigenvector.

Theorem. Let A be a self adjoint compact operator from $\mathcal{H} \rightarrow \mathcal{H}$. Then there are eigenvalues and eigenspaces

$$
E_{\lambda}=\{x: A x=\lambda x\}
$$

that are nontrivial only for a countable set $\left\{\lambda_{j}\right\} \subset R$ such that for $\lambda_{j} \neq 0, E_{\lambda_{j}}$ are finite dimensional and the only point of accumulation of $\left\{\lambda_{j}\right\}$ is $0 . E_{0}$ itself can be trivial, or nontrivial of finite or infinite dimension. $\left\{E_{\lambda_{j}}\right\}$ are mutually orthogonal and

$$
\mathcal{H}=\oplus E_{\lambda_{j}}
$$

Proof. Let $\lambda=\sup _{\|x\| \leq 1}\langle A x, x\rangle$. Clearly $\lambda \geq 0$ and assume that $\lambda>0$. There is a sequence x_{n} with $\left\|x_{n}\right\| \leq 1$ and $\left\langle A x_{n}, x_{n}\right\rangle \rightarrow \lambda$. Choose a subsequence $x_{n_{j}}$ that converges weakly to x_{0}. Then $A x_{n_{j}}$ must converge strongly (in norm) to $A x_{0}$. Implies $\left\langle A x_{n_{j}}, x_{n_{j}}\right\rangle \rightarrow$ $\left\langle A x_{0}, x_{0}\right\rangle=\lambda$. If $\left\|x_{0}\right\|=c<1,\left\langle A c^{-1} x_{0}, c^{-1} x_{0}\right\rangle=c^{-2} \lambda>\lambda=\sup _{\|x\| \leq 1}\langle A x, x\rangle$. A contradiction. So $\left\|x_{0}\right\|=1$ and the supremum is attained at x_{0}. In particular for $y \perp x_{0}$

$$
F(\epsilon)=\frac{1}{1+\epsilon^{2}}\left\langle A x_{0}+\epsilon y, x_{0}+\epsilon y\right\rangle \geq \lambda=F(0)
$$

It follows that $F^{\prime}(0)=\left\langle A x_{0}, y\right\rangle=0$. If $A x_{0} \perp y$ whenever $x_{0} \perp y, A x_{0}=c x_{0}$ and $c=\left\langle A x_{0}, x_{0}\right\rangle=\lambda$. We can repeat the process on $\mathcal{K}=\left\{y: y \perp x_{0}\right\}$ and proceed to get a sequence of eigenvalues $\lambda_{n}>0$, with mutually orthogonal eigenvectors x_{n} satisfying $\left\|x_{n}\right\|=1$ and $A x_{n}=\lambda_{n} x_{n}$. The process may send at a finite stage are proceed without end. We note that if $\left\|x_{n}\right\|=1$ and $\left\{x_{n}\right\}$ is mutually orthogonal

$$
\sum_{n}\left|\left\langle y, x_{n}\right\rangle\right|^{2} \leq\|y\|^{2}
$$

and $x_{n} \hookrightarrow 0 .\left\|A x_{n}\right\| \rightarrow 0$ and $\lambda_{n} \rightarrow 0$. If \mathcal{K}^{+}is the span of $\left\{x_{n}\right\}$, then on $\mathcal{K}^{\perp},\langle A x, x\rangle \leq$ 0 . We repeat the process with $-A$ and recover negative eigenvalues and eigenvectors corresponding to them, the eigenvectors span \mathcal{K}^{-}forcing $A=0$ on $\left[\mathcal{K}^{+} \oplus \mathcal{K}^{-}\right]^{\perp}$.
A self adjoint operator T is positive semidefinite, i.e. $(T \geq 0)$ if $\langle T x, x\rangle \geq 0$ for all $x \in \mathcal{H}$.
Theorem If T is a self adjoint operator and if $p(t)$ is a polynomial with real coefficients such that $p(t) \geq 0$ on the interval $[-\|T\| T \|$,$] then p(T)$ is positive semi definite.

The proof proceeds along these steps.

If $A \geq 0$, there is a selfadjoint operator $B \geq 0$ that commutes with A, is in fact a limit of polynomials of A such that $B^{2}=A$. By multiplying by a constant we can assume that $0 \leq A \leq I$. Then since

$$
\sqrt{\lambda}=\sqrt{1-(1-\lambda)}=1-\frac{1}{2}(1-\lambda)-\sum_{n \geq 2} \frac{1 \cdot 3 \cdot(2 n-3)}{2^{n} n!}(1-\lambda)^{n}
$$

the series

$$
\sum_{n \geq 2} \frac{1 \cdot 3 \cdot(2 n-3)}{2^{n} n!}
$$

converges,

$$
B=\sqrt{A}=\sqrt{1-(1-A)}=1-\frac{1}{2}(1-A)-\sum_{n \geq 2} \frac{1 \cdot 3 \cdot(2 n-3)}{2^{n} n!}(1-A)^{n}
$$

is well defined, is a self adjoint operator, commutes with A is a limit in operator norm of polynomials in A and $B^{2}=A$. If $A_{1} \geq 0$ and $A_{2} \geq 0$ are self adjoint operators that commute, then $A_{1} A_{2}$ is self-adjoint and $A_{1} A_{2} \geq 0 . A_{i}=B_{i}^{2}$ for $i=1,2$. They all mutually commute and $A_{1} A_{2}=\left(B_{1} B_{2}\right)^{2} \geq 0$.
Let the roots of $p(t)=0$ be $\left\{t_{j}\right\}$. They come in different types. Complex pairs $\left\{a_{j} \pm i b_{j}\right\}$ $\left\{c_{j} \leq-\|T\|\right\},\left\{d_{j} \geq\|T\|\right\}$ and roots of even multiplicity $\theta_{j} \in(-\|T\|, \| T)$. For some $c>0$

$$
\left.p(t)=c \Pi\left(t-\theta_{j}\right)^{2 n_{j}} \Pi\left(t-a_{j}\right)^{2}+b_{j}^{2}\right) \Pi\left(t-c_{j}\right) \Pi\left(d_{j}-t\right)
$$

and

$$
p(T)=c \Pi\left(T-\theta_{j} I\right)^{2 n_{j}} \Pi\left[\left(T-a_{j} I\right)^{2}+b_{j}^{2} I\right] \Pi\left(T-c_{j} I\right) \Pi\left(d_{j} I-T\right) \geq 0
$$

Remark. If f is a continuous function on $[-\|T\|,\|T\|]$, it is a uniform limit of polynomials $p_{n}(t)$ and then $p_{n}(T)$ will have a limit $f(T)$. This defines $f(T)$ for $f \in C([-\|T\|,\|T\|)$.

$$
\|f(T)\| \leq \sup _{-\|T\| \leq t \leq\|T\|}|f(t)|
$$

The linear functional $\langle f(T) x, x\rangle$ is a nonnegative linear functional having a representation

$$
\Lambda_{x}(f)=\int_{[-\|T\|,\|T\|]} f(t) \mu_{(x, x)}(d t)
$$

where $\mu_{(x, x)}$ is a nonnegative measure of mass $\|x\|^{2}$ supported on $[-\|T\|,\|T\|]$. We define

$$
\mu_{(x, y)}=\frac{1}{4}\left[\mu_{(x+y, x+y)}-\mu_{(x-y, x-y)}\right]
$$

in the real case and in the complex case

$$
\mu_{(x, y)}=\frac{1}{4}\left[\mu_{(x+y, x+y)}-\mu_{(x-y, x-y)}-i \mu_{(x+i y, x+i y)}+i \mu_{(x-i y, x-i y)}\right]
$$

Now $\int f(t) \mu_{(x, y)}(d t)=\langle f(T) x, y\rangle$ is defined for all bounded measurable functions f. Satisfies $(f g)(T)=f(T) g(T)$.

$$
\langle f(T) g(T) x, y\rangle=\int f(t) g(t) \mu_{(x, y)}(d t)
$$

Pass to the limit from polynomials. Use bounded convergence theorem on the right and weak limits on the left.

Problem 3. Show that for any $x \in \mathcal{H}, \mu_{(x, x)}\left[(\mathbf{S}(T))^{c}\right]=0$
Hint: Prove it first when $\mathbf{S}(T) \subset\{\lambda:|\lambda| \geq \ell\}$ for some ℓ and then show that it is enough.
Problem 4. Identify the spectral measures $\mu_{(x, x)}(d t)$ for a compact self-adjoint operator A.

Projection valued measures. If $E \subset[-\|T\|,\|T\|]$ is a Borel set then $\chi_{E}(T)$ is well defined. $\left\langle\chi_{E}(T) x, y\right\rangle=\int_{E} \mu_{(x, y)}(d t)$. Since $\chi_{E}^{2}=\chi_{E}, \sigma(E)=\chi_{E}(T)$ is a projection. $\sigma(E)$ is a projection valued measure. It satisfies

1. For any $E \in \mathcal{B}, \sigma(E)$ is an orthogonal projection.
2. For disjoint Borel sets $\left\{E_{i}\right\}, \sigma\left(E_{i}\right) \sigma\left(E_{j}\right)=0$ for $i \neq j$, and $\sigma\left(\cup E_{i}\right)=\sum_{i} \sigma\left(E_{i}\right)$.

Hilbert-Schmidt Operators. An operator A on a separable Hilbert space \mathcal{H} is HilbertSchmidt if for some orthonormal basis $\left\{e_{j}\right\}, \sum_{i, j}\left|\left\langle A e_{i}, e_{j}\right\rangle\right|^{2}<\infty$.
Problem 5. Prove that the definition is independent of the basis and that all HilbertSchmidt operators are compact.
Trace Class Operators. A positive semidefinite self adjoint operator A is of trace class if $\sum_{i}\left\langle A e_{i}, e_{i}\right\rangle$ is finite for some basis. Then it is finite on any basis and Trace $A=\sum_{i}\left\langle A e_{i}, e_{i}\right\rangle$ is well defined. A is Hilbert-Schmidt if and only if $A^{*} A$ or equivalently $A A^{*}$ is of trace class.

Problem 6. Show that if A is a compact operator, the nonzero eigenvalues of $A A^{*}$ and $A^{*} A$ are the same and have the same multiplicity. In particular their traces are both finite and equal or both infinite.
Consider the operator on $L_{2}[0,1]$,

$$
(T f)(x)=\int_{0}^{1} f(y) k(x, y) d y
$$

is well defined as a bounded operator, if $\int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d x d y<\infty$ and is in fact HilbertSchmidt. It is self adjoint if $k(x, y)=k(y, x)$ and then the eigenvalues and eigenfunctions satisfy

$$
\begin{gather*}
\sum_{j} \lambda_{j}^{2}=\int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d x d y \\
\sum_{i, j} \lambda_{j} f_{j}(x) f_{j}(y)=k(x, y) \tag{1}
\end{gather*}
$$

in $L_{2}\left[[0,1]^{2}\right]$. If $k(x, y)$ is continuous and positive definite (i.e. $\left\{k\left(x_{i}, x_{j}\right)\right\}$ is a positive semidefinite matrix for any finite collection $\left.\left\{x_{i}\right\}\right), T$ is positive definite operator which is trace class with trace equal to $\int_{0}^{1} k(x, x) d x$. The convergence in (1) is uniform.
Problem 8. Consider the operator

$$
(T f)(x)=\int_{0}^{1} f(y) k(x, y) d y
$$

on $L_{2}[0.1]$, where $k(x, y)=\min (x, y)-x y$, Find all the eigenvalues and eigenfunctions. Deduce the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

