
3. Operators on a Hilbert Space.

A Hilbert space H is a vector space over the real or complex scalars endowed with an
inner product 〈 , 〉 than maps H×H into R or C that satisfies the following properties.

1. 〈x, y〉 = 〈y, x〉 and 〈x, y〉 is linear in x, i.e. 〈a1x1 + a2x2, y〉 = a1〈x1, y〉+ a2〈x2, y〉 and
semilinear in y, that is 〈x, a1y1 + a1y2〉 = a1〈x, y1〉+ a2〈x, y2〉

2. 〈x, x〉 ≥ 0 and is equal to 0 if and only if x = 0. It follows that ‖x‖ = 〈x, x〉 1

2 is a norm
and

3. H is complete under this norm, as a mertic space with d(x, y) = ‖x− y‖.
We first note that 〈ax+ by, ax+ by〉 = ‖a‖2〈x, x〉+ ‖b‖2〈y, y〉+ 2RPab〈x, y〉 ≥ 0 for

all values of a and b. This forces

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

and
‖x+ y‖ ≤ ‖x‖+ ‖y‖

for all x, y ∈ H This makes d(x, y) = ‖x − y‖ in to a metric and H is assumed to be
complete under this metric.

Example 1. H = L2[0, 1]. 〈f, g〉 =
∫ 1

0
f(s)g(s)ds

Example 2. H = l2[Z
+]. 〈{an}, {bn}〉 =

∑∞
n=1 anbn

We say that x and y are orthogonal or x ⊥ y if 〈x, y〉 = 0. A collection {xα} is
mutually orthogonal if 〈xα, xβ〉 = 0 for α 6= β. It is an orthonormal family if in addition
‖xα‖ = 1 for every α. Any two vectors in an orthonormal family are at a distance

√
2.

In a separable Hilbert space any orthonormal set is either finite or countable. A maximal
collection of orthonormal {eα} vectors in H is a basis and

x =
∑

α

〈x, eα〉eα

is a convergent expansion with

‖x‖2 = 〈x , x〉 =
∑

α

|〈x, eα〉|2

For any subspace K ⊂ H there is the orthogonal complement K⊥ = {y : y ⊥ K}. (K⊥)⊥ =
K. H = K ⊕ K⊥. If Λ(x) is a bounded linear functional on H there is a unique y ∈ H
such that Λ(x) = 〈x , y 〉. To prove it let us look at the null space K = {x : Λ(x) = 0}. It
has codimension 1 and has x0 that is orthogonal to K and ‖x0‖ = 1 with Λ(x0) = c 6= 0.
Claim Λ(x) = 〈 x, c̄x0〉. True on K and true for x = x0. They span H.

1



Weak topology. xn →֒ x if 〈 y, xn〉 → 〈 y, x〉 for all y ∈ H. The unit ball {x : ‖x|| ≤ 1}
is compact in the weak topology. That is, given any bounded sequence xn with ‖xn‖ ≤ C
there is a sub sequence xnj

→֒ x. To see this we can assume H is separable. It is enough
to check it for a countable dense set of y ∈ H. But for each y, 〈 y, xn〉 is bounded and we
can extract a subsequence xnj

such that 〈y , xnj
〉 has a limit. Diagonalization works. We

get a subsequence that works for a countable dense set and hence for all y. The limit is a
bounded linear functional of y and is 〈 y, x0〉 for some x0 ∈ H
Orthogonal Projection. If K ⊂ H then H = K⊕K⊥ and x can be uniqulely decomposed
as x = x1 + x2 with x1 ∈ K and x2 ∈ K⊥. The maps Pi : x → xi are self adjoint, satisfy
P 2
i = Pi, P1P2 = P2P1 = 0 and P1+P2 = I. The infimum infy∈K ‖y−x‖ is attained when

y = P1x.

Problem. 1. If xn →֒ x then ‖x‖ ≤ lim infn→∞ ‖xn‖. If xn →֒ x and ‖xn‖ → ‖x‖ then
‖xn − x‖ → 0.

Linear Operators on H. A map T from one Hilbert space H to another Hilbert space
K is a bounded linear operator if it is linear i.e. T (ax + by) = aTx + bTy and bounded
i.e. ‖Tx‖ ≤ C‖x‖. A linear map is continuous if and only if it is bounded. ‖T‖ =
sup‖x‖≤1 ‖Tx‖. ‖T1T2‖ ≤ ‖T1‖‖T2‖. A linear operator T is compact if the image under
T of the unit ball ‖x‖ ≤ 1 compact in K. The adjoint T ∗ of a bounded linear operator
T : H → H is defined by 〈T ∗x, y〉 = 〈x, Ty〉. One checks that (aT1 + bT2)

∗ = ā1T
∗
1 + ā2T

∗
2

and (T1T2)
∗ = T ∗

2 T
∗
1 . An operator T is self adjoint if T ∗ = T i.e. 〈Tx, y〉 = 〈x, Ty〉.

In general the product T1T2 of two self adjoint operators is not self adjoint unless they
commute, i.e T1T2 = T2T1. If T is self adjoint so is any p(T ) for any polynomial p with
real coefficients.

The resolvent set of an operator T in Hilbert Space over the complex numbers is z ∈ C

such that (zI − T )−1 exists as a bounded operator., i.e. (zI − T ) is one to one, onto and
( therefore has a bounded inverse), its complement is the spectrum S(T ).

If z ∈ S(T ) then |z| ≤ ‖T‖. If |z| > ‖T‖,

(zI − T )−1 = z−1(I − T

z
)−1 =

∑

n≥0

Tn

zn+1

exists as a bounded operator and so z /∈ S(T ). If S(T ) is empty (zI − T )−1 is entire and
tends to 0 at ∞. Therefore (I − T

z
)−1 ≡ 0. Cannot be!

If zI − T may not be invertible because it has a null space i.e nontrivial solutions exist for
Tx = zx where z is a complex scalar. Then z ∈ S(T ) and z is an eigenvalue with x as the
eigenvector.

If T is a self-adjoint operator S(T ) ⊂ [−‖T‖, ‖T‖] ⊂ R. It is enough to show z = a+ ib /∈
S(T ) if b 6= 0.

Problem. 2. Show that for any bounded operator T , if N(T ) = {x : Tx = 0} is the null
space and R(T ) = {y : y = Tx} for some x is the range then N(T ∗) = R(T ).
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To prove z = a+ ib /∈ S(T ) it is enough to show that Tx = zx has no nonzero solution and
that R(T −zI) is closed.Then it can not be a proper subspace because then the orthogonal
complement which is the null space of T ∗ − zI = T − zI would be nontrivial. We next
need to prove that the range is dense. An inequality of the form ‖(T − zI)x‖ ≥ c‖x‖ is
enough, because if yn = (T − zI)xn has a limit y then xn will be a Cauchy sequence with
a limit x and (zI − T )x = y.

〈(zI − T )x, (zI − T )x〉 = ‖a‖2‖x‖2 + ‖b‖2‖x‖2 + ‖Tx‖2 − 〈(a+ ib)x, Tx〉 − 〈Tx, (a+ ib)x〉
= ‖a‖2‖x‖2 + ‖b‖2‖x‖2 + ‖Tx‖2 − (a+ ib)〈Tx, x〉 − (a− ib)〈Tx, x〉
= ‖a‖2‖x‖2 + ‖b‖2‖x‖2 + ‖Tx‖2 − 2a〈Tx, x〉
= ‖b‖2‖x‖2 + ‖Tx− ax‖2

≥ ‖b‖2‖x‖2

An operator T : H → K is completely continuous or compact if any bounded sequence xn

has a subsequence xnj
such that Txnj

converges. In other words the image under T of the
unit ball ‖x‖ ≤ 1 in H is compact in K Often K = H.

An eigenvalue λ of an operator T from H → H is one for which Tx = λx has a nontrivial
solution and the corresponding x is the eigenvector.

Theorem. Let A be a self adjoint compact operator from H → H. Then there are
eigenvalues and eigenspaces

Eλ = {x : Ax = λx}
that are nontrivial only for a countable set {λj} ⊂ R such that for λj 6= 0, Eλj

are finite
dimensional and the only point of accumulation of {λj} is 0. E0 itself can be trivial, or
nontrivial of finite or infinite dimension. {Eλj

} are mutually orthogonal and

H = ⊕Eλj

Proof. Let λ = sup‖x‖≤1〈Ax , x〉. Clearly λ ≥ 0 and assume that λ > 0. There is a
sequence xn with ‖xn‖ ≤ 1 and 〈Axn , xn〉 → λ. Choose a subsequence xnj

that converges
weakly to x0. Then Axnj

must converge strongly (in norm) to Ax0. Implies 〈Axnj
, xnj

〉 →
〈Ax0, x0〉 = λ. If ‖x0‖ = c < 1, 〈Ac−1x0, c

−1x0〉 = c−2λ > λ = sup‖x‖≤1〈Ax, x〉. A
contradiction. So ‖x0‖ = 1 and the supremum is attained at x0. In particular for y ⊥ x0

F (ǫ) =
1

1 + ǫ2
〈Ax0 + ǫy, x0 + ǫy〉 ≥ λ = F (0)

It follows that F ′(0) = 〈Ax0, y〉 = 0. If Ax0 ⊥ y whenever x0 ⊥ y, Ax0 = cx0 and
c = 〈Ax0, x0〉 = λ. We can repeat the process on K = {y : y ⊥ x0} and proceed to
get a sequence of eigenvalues λn > 0, with mutually orthogonal eigenvectors xn satisfying
‖xn‖ = 1 and Axn = λnxn. The process may send at a finite stage are proceed without
end. We note that if ‖xn‖ = 1 and {xn} is mutually orthogonal

∑

n

|〈y, xn〉|2 ≤ ‖y‖2
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and xn →֒ 0. ‖Axn‖ → 0 and λn → 0. If K+ is the span of {xn}, then on K⊥, 〈Ax, x〉 ≤
0. We repeat the process with −A and recover negative eigenvalues and eigenvectors
corresponding to them, the eigenvectors span K− forcing A = 0 on [K+ ⊕K−]⊥.

A self adjoint operator T is positive semidefinite, i.e. (T ≥ 0) if 〈Tx , x〉 ≥ 0 for all x ∈ H.

Theorem If T is a self adjoint operator and if p(t) is a polynomial with real coefficients
such that p(t) ≥ 0 on the interval [−‖T, ‖T‖] then p(T ) is positive semi definite.

The proof proceeds along these steps.

If A ≥ 0, there is a selfadjoint operator B ≥ 0 that commutes with A, is in fact a limit
of polynomials of A such that B2 = A. By multiplying by a constant we can assume that
0 ≤ A ≤ I. Then since

√
λ =

√

1− (1− λ) = 1− 1

2
(1− λ)−

∑

n≥2

1 · 3 · (2n− 3)

2nn!
(1− λ)n

the series
∑

n≥2

1 · 3 · (2n− 3)

2nn!

converges,

B =
√
A =

√

1− (1−A) = 1− 1

2
(1− A)−

∑

n≥2

1 · 3 · (2n− 3)

2nn!
(1− A)n

is well defined, is a self adjoint operator, commutes with A is a limit in operator norm
of polynomials in A and B2 = A. If A1 ≥ 0 and A2 ≥ 0 are self adjoint operators that
commute, then A1A2 is self-adjoint and A1A2 ≥ 0. Ai = B2

i for i = 1, 2. They all mutually
commute and A1A2 = (B1B2)

2 ≥ 0.

Let the roots of p(t) = 0 be {tj}. They come in different types. Complex pairs {aj ± ibj}
{cj ≤ −‖T‖}, {dj ≥ ‖T‖} and roots of even multiplicity θj ∈ (−‖T‖, ‖T ). For some c > 0

p(t) = cΠ(t− θj)
2njΠ(t− aj)

2 + b2j)Π(t− cj)Π(dj − t)

and
p(T ) = cΠ(T − θjI)

2njΠ[(T − ajI)
2 + b2jI]Π(T − cjI)Π(djI − T ) ≥ 0

Remark. If f is a continuous function on [−‖T‖, ‖T‖], it is a uniform limit of polynomials
pn(t) and then pn(T ) will have a limit f(T ). This defines f(T ) for f ∈ C([−‖T‖, ‖T‖).

‖f(T )‖ ≤ sup
−‖T‖≤t≤‖T‖

|f(t)|

The linear functional 〈f(T )x, x〉 is a nonnegative linear functional having a representation

Λx(f) =

∫

[−‖T‖,‖T‖]

f(t)µ(x,x)(dt)
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where µ(x,x) is a nonnegative measure of mass ‖x‖2 supported on [−‖T‖, ‖T‖]. We define

µ(x,y) =
1

4
[µ(x+y,x+y) − µ(x−y,x−y)]

in the real case and in the complex case

µ(x,y) =
1

4
[µ(x+y,x+y) − µ(x−y,x−y) − iµ(x+iy,x+iy) + iµ(x−iy,x−iy)]

Now
∫

f(t)µ(x,y)(dt) = 〈f(T )x, y〉 is defined for all bounded measurable functions f . Sat-
isfies (fg)(T ) = f(T )g(T ).

〈f(T )g(T )x, y〉 =
∫

f(t)g(t)µ(x,y)(dt)

Pass to the limit from polynomials. Use bounded convergence theorem on the right and
weak limits on the left.

Problem 3. Show that for any x ∈ H, µ(x,x)[(S(T ))
c] = 0

Hint: Prove it first when S(T ) ⊂ {λ : |λ| ≥ ℓ} for some ℓ and then show that it is enough.

Problem 4. Identify the spectral measures µ(x,x)(dt) for a compact self-adjoint operator
A.

Projection valued measures. If E ⊂ [−‖T‖, ‖T‖] is a Borel set then χE(T ) is well
defined. 〈χE(T )x, y〉 =

∫

E
µ(x,y)(dt). Since χ

2
E = χE , σ(E) = χE(T ) is a projection. σ(E)

is a projection valued measure. It satisfies

1. For any E ∈ B, σ(E) is an orthogonal projection.

2. For disjoint Borel sets {Ei}, σ(Ei)σ(Ej) = 0 for i 6= j, and σ(∪Ei) =
∑

i σ(Ei).

Hilbert-Schmidt Operators. An operator A on a separable Hilbert space H isHilbert-

Schmidt if for some orthonormal basis {ej},
∑

i,j |〈Aei, ej〉|2 < ∞.

Problem 5. Prove that the definition is independent of the basis and that all Hilbert-
Schmidt operators are compact.

Trace Class Operators. A positive semidefinite self adjoint operator A is of trace class if
∑

i〈Aei, ei〉 is finite for some basis. Then it is finite on any basis and TraceA =
∑

i〈Aei, ei〉
is well defined. A is Hilbert-Schmidt if and only if A∗A or equivalently AA∗ is of trace
class.

Problem 6. Show that if A is a compact operator, the nonzero eigenvalues of AA∗ and
A∗A are the same and have the same multiplicity. In particular their traces are both finite
and equal or both infinite.

Consider the operator on L2[0, 1],

(Tf)(x) =

∫ 1

0

f(y)k(x, y)dy
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is well defined as a bounded operator, if
∫ 1

0

∫ 1

0
|k(x, y)|2dxdy < ∞ and is in fact Hilbert-

Schmidt. It is self adjoint if k(x, y) = k(y, x) and then the eigenvalues and eigenfunctions
satisfy

∑

j

λ2
j =

∫ 1

0

∫ 1

0

|k(x, y)|2dxdy

∑

i,j

λjfj(x)fj(y) = k(x, y) (1)

in L2[[0, 1]
2]. If k(x, y) is continuous and positive definite (i.e. {k(xi, xj)} is a positive

semidefinite matrix for any finite collection {xi}), T is positive definite operator which is

trace class with trace equal to
∫ 1

0
k(x, x)dx. The convergence in (1) is uniform.

Problem 8. Consider the operator

(Tf)(x) =

∫ 1

0

f(y)k(x, y)dy

on L2[0.1], where k(x, y) = min(x, y) − xy, Find all the eigenvalues and eigenfunctions.
Deduce the value of the sum

∑∞
n=1

1
n2 .
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