3. Operators on a Hilbert Space.

A Hilbert space \mathcal{H} is a vector space over the real or complex scalars endowed with an inner product \langle , \rangle than maps $\mathcal{H} \times \mathcal{H}$ into **R** or **C** that satisfies the following properties.

1. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ and $\langle x, y \rangle$ is linear in x, i.e. $\langle a_1 x_1 + a_2 x_2, y \rangle = a_1 \langle x_1, y \rangle + a_2 \langle x_2, y \rangle$ and semilinear in y, that is $\langle x, a_1 y_1 + a_1 y_2 \rangle = \overline{a_1} \langle x, y_1 \rangle + \overline{a_2} \langle x, y_2 \rangle$

2. $\langle x, x \rangle \ge 0$ and is equal to 0 if and only if x = 0. It follows that $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ is a norm and

3. \mathcal{H} is complete under this norm, as a mertic space with d(x, y) = ||x - y||.

We first note that $\langle ax + by, ax + by \rangle = ||a||^2 \langle x, x \rangle + ||b||^2 \langle y, y \rangle + 2RPa\overline{b} \langle x, y \rangle \ge 0$ for all values of a and b. This forces

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

and

$$||x+y|| \le ||x|| + ||y||$$

for all $x, y \in \mathcal{H}$ This makes d(x, y) = ||x - y|| in to a metric and \mathcal{H} is assumed to be complete under this metric.

Example 1. $\mathcal{H} = L_2[0,1]$. $\langle f,g \rangle = \int_0^1 f(s)\overline{g(s)}ds$

Example 2. $\mathcal{H} = l_2[Z^+]$. $\langle \{a_n\}, \{b_n\} \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n}$

We say that x and y are orthogonal or $x \perp y$ if $\langle x, y \rangle = 0$. A collection $\{x_{\alpha}\}$ is mutually orthogonal if $\langle x_{\alpha}, x_{\beta} \rangle = 0$ for $\alpha \neq \beta$. It is an orthonormal family if in addition $||x_{\alpha}|| = 1$ for every α . Any two vectors in an orthonormal family are at a distance $\sqrt{2}$. In a separable Hilbert space any orthonormal set is either finite or countable. A maximal collection of orthonormal $\{e_{\alpha}\}$ vectors in \mathcal{H} is a basis and

$$x = \sum_{\alpha} \langle x, e_{\alpha} \rangle e_{\alpha}$$

is a convergent expansion with

$$||x||^2 = \langle x, x \rangle = \sum_{\alpha} |\langle x, e_{\alpha} \rangle|^2$$

For any subspace $\mathcal{K} \subset \mathcal{H}$ there is the orthogonal complement $\mathcal{K}^{\perp} = \{y : y \perp \mathcal{K}\}.$ $(\mathcal{K}^{\perp})^{\perp} = \mathcal{K}.$ $\mathcal{H} = \mathcal{K} \oplus \mathcal{K}^{\perp}.$ If $\Lambda(x)$ is a bounded linear functional on \mathcal{H} there is a unique $y \in \mathcal{H}$ such that $\Lambda(x) = \langle x, y \rangle$. To prove it let us look at the null space $\mathcal{K} = \{x : \Lambda(x) = 0\}.$ It has codimension 1 and has x_0 that is orthogonal to \mathcal{K} and $||x_0|| = 1$ with $\Lambda(x_0) = c \neq 0.$ Claim $\Lambda(x) = \langle x, \bar{c}x_0 \rangle$. True on \mathcal{K} and true for $x = x_0$. They span $\mathcal{H}.$

Weak topology. $x_n \hookrightarrow x$ if $\langle y, x_n \rangle \to \langle y, x \rangle$ for all $y \in \mathcal{H}$. The unit ball $\{x : ||x|| \leq 1\}$ is compact in the weak topology. That is, given any bounded sequence x_n with $||x_n|| \leq C$ there is a sub sequence $x_{n_j} \hookrightarrow x$. To see this we can assume \mathcal{H} is separable. It is enough to check it for a countable dense set of $y \in \mathcal{H}$. But for each $y, \langle y, x_n \rangle$ is bounded and we can extract a subsequence x_{n_j} such that $\langle y, x_{n_j} \rangle$ has a limit. Diagonalization works. We get a subsequence that works for a countable dense set and hence for all y. The limit is a bounded linear functional of y and is $\langle y, x_0 \rangle$ for some $x_0 \in \mathcal{H}$

Orthogonal Projection. If $\mathcal{K} \subset \mathcal{H}$ then $\mathcal{H} = \mathcal{K} \oplus \mathcal{K}^{\perp}$ and x can be uniquely decomposed as $x = x_1 + x_2$ with $x_1 \in \mathcal{K}$ and $x_2 \in \mathcal{K}^{\perp}$. The maps $P_i : x \to x_i$ are self adjoint, satisfy $P_i^2 = P_i, P_1P_2 = P_2P_1 = 0$ and $P_1 + P_2 = I$. The infimum $\inf_{y \in \mathcal{K}} ||y - x||$ is attained when $y = P_1 x$.

Problem. 1. If $x_n \hookrightarrow x$ then $||x|| \leq \liminf_{n \to \infty} ||x_n||$. If $x_n \hookrightarrow x$ and $||x_n|| \to ||x||$ then $||x_n - x|| \to 0$.

Linear Operators on \mathcal{H} . A map T from one Hilbert space \mathcal{H} to another Hilbert space \mathcal{K} is a bounded linear operator if it is linear i.e. T(ax + by) = aTx + bTy and bounded i.e. $||Tx|| \leq C||x||$. A linear map is continuous if and only if it is bounded. $||T|| = \sup_{||x|| \leq 1} ||Tx||$. $||T_1T_2|| \leq ||T_1|| ||T_2||$. A linear operator T is compact if the image under T of the unit ball $||x|| \leq 1$ compact in \mathcal{K} . The adjoint T^* of a bounded linear operator $T : \mathcal{H} \to \mathcal{H}$ is defined by $\langle T^*x, y \rangle = \langle x, Ty \rangle$. One checks that $(aT_1 + bT_2)^* = \bar{a}_1T_1^* + \bar{a}_2T_2^*$ and $(T_1T_2)^* = T_2^*T_1^*$. An operator T is self adjoint if $T^* = T$ i.e. $\langle Tx, y \rangle = \langle x, Ty \rangle$. In general the product T_1T_2 of two self adjoint so is any p(T) for any polynomial p with real coefficients.

The resolvent set of an operator T in Hilbert Space over the complex numbers is $z \in \mathbf{C}$ such that $(zI - T)^{-1}$ exists as a bounded operator., i.e. (zI - T) is one to one, onto and (therefore has a bounded inverse), its complement is the spectrum $\mathbf{S}(T)$.

If $z \in \mathbf{S}(T)$ then $|z| \le ||T||$. If |z| > ||T||,

$$(zI - T)^{-1} = z^{-1}(I - \frac{T}{z})^{-1} = \sum_{n>0} \frac{T^n}{z^{n+1}}$$

exists as a bounded operator and so $z \notin \mathbf{S}(T)$. If $\mathbf{S}(T)$ is empty $(zI - T)^{-1}$ is entire and tends to 0 at ∞ . Therefore $(I - \frac{T}{z})^{-1} \equiv 0$. Cannot be!

If zI - T may not be invertible because it has a null space i.e nontrivial solutions exist for Tx = zx where z is a complex scalar. Then $z \in \mathbf{S}(T)$ and z is an eigenvalue with x as the eigenvector.

If T is a self-adjoint operator $\mathbf{S}(T) \subset [-\|T\|, \|T\|] \subset \mathbf{R}$. It is enough to show $z = a + ib \notin \mathbf{S}(T)$ if $b \neq 0$.

Problem. 2. Show that for any bounded operator T, if $\mathbf{N}(T) = \{x : Tx = 0\}$ is the null space and $\mathbf{R}(T) = \{y : y = Tx\}$ for some x is the range then $\mathbf{N}(T^*) = \overline{\mathbf{R}(T)}$.

To prove $z = a + ib \notin \mathbf{S}(T)$ it is enough to show that Tx = zx has no nonzero solution and that $\mathbf{R}(T-zI)$ is closed. Then it can not be a proper subspace because then the orthogonal complement which is the null space of $T^* - zI = T - zI$ would be nontrivial. We next need to prove that the range is dense. An inequality of the form $||(T-zI)x|| \ge c||x||$ is enough, because if $y_n = (T - zI)x_n$ has a limit y then x_n will be a Cauchy sequence with a limit x and (zI - T)x = y.

$$\begin{aligned} \langle (zI-T)x, (zI-T)x \rangle &= \|a\|^2 \|x\|^2 + \|b\|^2 \|x\|^2 + \|Tx\|^2 - \langle (a+ib)x, Tx \rangle - \langle Tx, (a+ib)x \rangle \\ &= \|a\|^2 \|x\|^2 + \|b\|^2 \|x\|^2 + \|Tx\|^2 - (a+ib) \langle Tx, x \rangle - (a-ib) \langle Tx, x \rangle \\ &= \|a\|^2 \|x\|^2 + \|b\|^2 \|x\|^2 + \|Tx\|^2 - 2a \langle Tx, x \rangle \\ &= \|b\|^2 \|x\|^2 + \|Tx - ax\|^2 \\ &\geq \|b\|^2 \|x\|^2 \end{aligned}$$

An operator $T : \mathcal{H} \to \mathcal{K}$ is completely continuous or compact if any bounded sequence x_n has a subsequence x_{n_j} such that Tx_{n_j} converges. In other words the image under T of the unit ball $||x|| \leq 1$ in \mathcal{H} is compact in \mathcal{K} Often $\mathcal{K} = \mathcal{H}$.

An eigenvalue λ of an operator T from $\mathcal{H} \to \mathcal{H}$ is one for which $Tx = \lambda x$ has a nontrivial solution and the corresponding x is the eigenvector.

Theorem. Let A be a self adjoint compact operator from $\mathcal{H} \to \mathcal{H}$. Then there are eigenvalues and eigenspaces

$$E_{\lambda} = \{x : Ax = \lambda x\}$$

that are nontrivial only for a countable set $\{\lambda_j\} \subset R$ such that for $\lambda_j \neq 0$, E_{λ_j} are finite dimensional and the only point of accumulation of $\{\lambda_j\}$ is 0. E_0 itself can be trivial, or nontrivial of finite or infinite dimension. $\{E_{\lambda_j}\}$ are mutually orthogonal and

$$\mathcal{H} = \oplus E_{\lambda}$$

Proof. Let $\lambda = \sup_{\|x\| \leq 1} \langle Ax, x \rangle$. Clearly $\lambda \geq 0$ and assume that $\lambda > 0$. There is a sequence x_n with $\|x_n\| \leq 1$ and $\langle Ax_n, x_n \rangle \to \lambda$. Choose a subsequence x_{n_j} that converges weakly to x_0 . Then Ax_{n_j} must converge strongly (in norm) to Ax_0 . Implies $\langle Ax_{n_j}, x_{n_j} \rangle \to \langle Ax_0, x_0 \rangle = \lambda$. If $\|x_0\| = c < 1$, $\langle Ac^{-1}x_0, c^{-1}x_0 \rangle = c^{-2}\lambda > \lambda = \sup_{\|x\| \leq 1} \langle Ax, x \rangle$. A contradiction. So $\|x_0\| = 1$ and the supremum is attained at x_0 . In particular for $y \perp x_0$

$$F(\epsilon) = \frac{1}{1+\epsilon^2} \langle Ax_0 + \epsilon y, x_0 + \epsilon y \rangle \ge \lambda = F(0)$$

It follows that $F'(0) = \langle Ax_0, y \rangle = 0$. If $Ax_0 \perp y$ whenever $x_0 \perp y$, $Ax_0 = cx_0$ and $c = \langle Ax_0, x_0 \rangle = \lambda$. We can repeat the process on $\mathcal{K} = \{y : y \perp x_0\}$ and proceed to get a sequence of eigenvalues $\lambda_n > 0$, with mutually orthogonal eigenvectors x_n satisfying $||x_n|| = 1$ and $Ax_n = \lambda_n x_n$. The process may send at a finite stage are proceed without end. We note that if $||x_n|| = 1$ and $\{x_n\}$ is mutually orthogonal

$$\sum_{n} |\langle y, x_n \rangle|^2 \le ||y||^2$$

and $x_n \hookrightarrow 0$. $||Ax_n|| \to 0$ and $\lambda_n \to 0$. If \mathcal{K}^+ is the span of $\{x_n\}$, then on \mathcal{K}^{\perp} , $\langle Ax, x \rangle \leq 0$. We repeat the process with -A and recover negative eigenvalues and eigenvectors corresponding to them, the eigenvectors span \mathcal{K}^- forcing A = 0 on $[\mathcal{K}^+ \oplus \mathcal{K}^-]^{\perp}$.

A self adjoint operator T is positive semidefinite, i.e. $(T \ge 0)$ if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$.

Theorem If T is a self adjoint operator and if p(t) is a polynomial with real coefficients such that $p(t) \ge 0$ on the interval [-||T, ||T||] then p(T) is positive semi definite.

The proof proceeds along these steps.

If $A \ge 0$, there is a selfadjoint operator $B \ge 0$ that commutes with A, is in fact a limit of polynomials of A such that $B^2 = A$. By multiplying by a constant we can assume that $0 \le A \le I$. Then since

$$\sqrt{\lambda} = \sqrt{1 - (1 - \lambda)} = 1 - \frac{1}{2}(1 - \lambda) - \sum_{n \ge 2} \frac{1 \cdot 3 \cdot (2n - 3)}{2^n n!} (1 - \lambda)^n$$

the series

$$\sum_{n\geq 2} \frac{1\cdot 3\cdot (2n-3)}{2^n n!}$$

converges,

$$B = \sqrt{A} = \sqrt{1 - (1 - A)} = 1 - \frac{1}{2}(1 - A) - \sum_{n \ge 2} \frac{1 \cdot 3 \cdot (2n - 3)}{2^n n!} (1 - A)^n$$

is well defined, is a self adjoint operator, commutes with A is a limit in operator norm of polynomials in A and $B^2 = A$. If $A_1 \ge 0$ and $A_2 \ge 0$ are self adjoint operators that commute, then A_1A_2 is self-adjoint and $A_1A_2 \ge 0$. $A_i = B_i^2$ for i = 1, 2. They all mutually commute and $A_1A_2 = (B_1B_2)^2 \ge 0$.

Let the roots of p(t) = 0 be $\{t_j\}$. They come in different types. Complex pairs $\{a_j \pm ib_j\}$ $\{c_j \leq -||T||\}, \{d_j \geq ||T||\}$ and roots of even multiplicity $\theta_j \in (-||T||, ||T|)$. For some c > 0

$$p(t) = c\Pi(t - \theta_j)^{2n_j}\Pi(t - a_j)^2 + b_j^2)\Pi(t - c_j)\Pi(d_j - t)$$

and

$$p(T) = c\Pi(T - \theta_j I)^{2n_j} \Pi[(T - a_j I)^2 + b_j^2 I] \Pi(T - c_j I) \Pi(d_j I - T) \ge 0$$

Remark. If f is a continuous function on [-||T||, ||T||], it is a uniform limit of polynomials $p_n(t)$ and then $p_n(T)$ will have a limit f(T). This defines f(T) for $f \in C([-||T||, ||T||)$.

$$||f(T)|| \le \sup_{-||T|| \le t \le ||T||} |f(t)|$$

The linear functional $\langle f(T)x, x \rangle$ is a nonnegative linear functional having a representation

$$\Lambda_x(f) = \int_{[-\|T\|, \|T\|]} f(t) \mu_{(x,x)}(dt)$$

where $\mu_{(x,x)}$ is a nonnegative measure of mass $||x||^2$ supported on [-||T||, ||T||]. We define

$$\mu_{(x,y)} = \frac{1}{4} [\mu_{(x+y,x+y)} - \mu_{(x-y,x-y)}]$$

in the real case and in the complex case

$$\mu_{(x,y)} = \frac{1}{4} \left[\mu_{(x+y,x+y)} - \mu_{(x-y,x-y)} - i\mu_{(x+iy,x+iy)} + i\mu_{(x-iy,x-iy)} \right]$$

Now $\int f(t)\mu_{(x,y)}(dt) = \langle f(T)x, y \rangle$ is defined for all bounded measurable functions f. Satisfies (fg)(T) = f(T)g(T).

$$\langle f(T)g(T)x,y\rangle = \int f(t)g(t)\mu_{(x,y)}(dt)$$

Pass to the limit from polynomials. Use bounded convergence theorem on the right and weak limits on the left.

Problem 3. Show that for any $x \in \mathcal{H}$, $\mu_{(x,x)}[(\mathbf{S}(T))^c] = 0$

Hint: Prove it first when $\mathbf{S}(T) \subset \{\lambda : |\lambda| \ge \ell\}$ for some ℓ and then show that it is enough.

Problem 4. Identify the spectral measures $\mu_{(x,x)}(dt)$ for a compact self-adjoint operator A.

Projection valued measures. If $E \subset [-||T||, ||T||]$ is a Borel set then $\chi_E(T)$ is well defined. $\langle \chi_E(T)x, y \rangle = \int_E \mu_{(x,y)}(dt)$. Since $\chi_E^2 = \chi_E$, $\sigma(E) = \chi_E(T)$ is a projection. $\sigma(E)$ is a projection valued measure. It satisfies

1. For any $E \in \mathcal{B}$, $\sigma(E)$ is an orthogonal projection.

2. For disjoint Borel sets $\{E_i\}$, $\sigma(E_i)\sigma(E_j) = 0$ for $i \neq j$, and $\sigma(\cup E_i) = \sum_i \sigma(E_i)$.

Hilbert-Schmidt Operators. An operator A on a separable Hilbert space \mathcal{H} is Hilbert-Schmidt if for some orthonormal basis $\{e_j\}, \sum_{i,j} |\langle Ae_i, e_j \rangle|^2 < \infty$.

Problem 5. Prove that the definition is independent of the basis and that all Hilbert-Schmidt operators are compact.

Trace Class Operators. A positive semidefinite self adjoint operator A is of trace class if $\sum_i \langle Ae_i, e_i \rangle$ is finite for some basis. Then it is finite on any basis and Trace $A = \sum_i \langle Ae_i, e_i \rangle$ is well defined. A is Hilbert-Schmidt if and only if A^*A or equivalently AA^* is of trace class.

Problem 6. Show that if A is a compact operator, the nonzero eigenvalues of AA^* and A^*A are the same and have the same multiplicity. In particular their traces are both finite and equal or both infinite.

Consider the operator on $L_2[0,1]$,

$$(Tf)(x) = \int_0^1 f(y)k(x,y)dy$$

is well defined as a bounded operator, if $\int_0^1 \int_0^1 |k(x,y)|^2 dx dy < \infty$ and is in fact Hilbert-Schmidt. It is self adjoint if k(x,y) = k(y,x) and then the eigenvalues and eigenfunctions satisfy

$$\sum_{j} \lambda_j^2 = \int_0^1 \int_0^1 |k(x,y)|^2 dx dy$$
$$\sum_{i,j} \lambda_j f_j(x) f_j(y) = k(x,y) \tag{1}$$

in $L_2[[0,1]^2]$. If k(x,y) is continuous and positive definite (i.e. $\{k(x_i, x_j)\}$ is a positive semidefinite matrix for any finite collection $\{x_i\}$), T is positive definite operator which is trace class with trace equal to $\int_0^1 k(x, x) dx$. The convergence in (1) is uniform.

Problem 8. Consider the operator

$$(Tf)(x) = \int_0^1 f(y)k(x,y)dy$$

on $L_2[0.1]$, where $k(x, y) = \min(x, y) - xy$, Find all the eigenvalues and eigenfunctions. Deduce the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.